Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(7): 3332-3347, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940107

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder in the world. We have seen that gluten intake exacerbated obesity and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice. In this study, we investigated the effect of gluten consumption on inflammation and oxidative stress in the liver of mice with NAFLD. Male ApoE-/- mice were fed a gluten-free (GF-HFD) or gluten-containing (G-HFD) high-fat diet for 10 weeks. Blood, liver, and spleen were collected to perform the analyses. The animals of the gluten group had increased hepatic steatosis, followed by increased serum AST and ALT. Gluten intake increased hepatic infiltration of neutrophils, macrophages, and eosinophils, as well as the levels of chemotaxis-related factors CCL2, Cxcl2, and Cxcr3. The production of the TNF, IL-1ß, IFNγ, and IL-4 cytokines in the liver was also increased by gluten intake. Furthermore, gluten exacerbated the hepatic lipid peroxidation and nitrotyrosine deposition, which were associated with increased production of ROS and nitric oxide. These effects were related to increased expression of NADPH oxidase and iNOS, as well as decreased activity of superoxide dismutase and catalase enzymes. There was an increased hepatic expression of the NF-κB and AP1 transcription factors, corroborating the worsening effect of gluten on inflammation and oxidative stress. Finally, we found an increased frequency of CD4+FOXP3+ lymphocytes in the spleen and increased gene expression of Foxp3 in the livers of the G-HFD group. In conclusion, dietary gluten aggravates NAFLD, exacerbating hepatic inflammation and oxidative stress in obese ApoE-deficient mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glutens/metabolismo , Camundongos Knockout para ApoE , Fígado/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Apolipoproteínas E/genética , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 11: 562905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072101

RESUMO

Oral tolerance is the physiological process that enables the immune system to differentiate between harmless dietary and microbiota antigens from pathogen derived antigens. It develops at the mucosal surfaces and can result in local and systemic regulatory and anti-inflammatory effects. Translation of these benefits to the clinical practice faces limitations involving specificity and doses of antigen as well as regimens of feeding. To circumvent these problems, we developed a recombinant Hsp65 delivered by the acid lactic bacteria Lactococcus lactis NCDO 2118 directy in the intestinal mucosa. Hsp65 is a ubiquitous protein overexpressed in inflamed tissues and capable of inducing immunoregulatory mechanisms. L. lactis has probiotic properties and is commonly and safely used in dairy products. In this study, we showed that continuous delivery of HSP65 in the gut mucosa by L. lactis is a potent tolerogenic stimulus inducing regulatory CD4+LAP+ T cells that prevented collagen-induced and methylated bovine serum albumin-induced arthritis in mice. Clinical and histological signs of arthritis were inhibited as well as levels of inflammatory cytokines such as IL-17 and IFN-γ, serum titers of anti-collagen antibodies and rheumatoid factor. Oral administration of L. lactis induced alterations in microbiota composition toward an increased abundance of anaerobic bacteria such as Bifidobacterium and Lactobacillus. Tolerance to HSP65 and arthritis prevention induced by the recombinant L. lactis was associated with increase in IL-10 production by B cells and it was dependent on LAP+ T cells, IL-10 and TLR2 signaling. Therefore, HSP65-producing treatment induced effective tolerance and prevented arthritis development suggesting it can be used as a therapeutic tool for autoimmune diseases.


Assuntos
Artrite/induzido quimicamente , Artrite/prevenção & controle , Proteínas de Bactérias/metabolismo , Colágeno/efeitos adversos , Proteínas de Choque Térmico/metabolismo , Lactococcus lactis/metabolismo , Soroalbumina Bovina/efeitos adversos , Administração Oral , Animais , Artrite/imunologia , Doenças Autoimunes/prevenção & controle , Proteínas de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Proteínas de Choque Térmico/genética , Tolerância Imunológica , Mucosa Intestinal/imunologia , Lactococcus lactis/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Proteínas Recombinantes/metabolismo
3.
Nutrition ; 75-76: 110658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32305657

RESUMO

OBJECTIVES: Atherosclerosis is an underlying cause of cardiovascular disease, and obesity is one of the risk factors for atherogenesis. Although a gluten-free diet (GFD) has gained popularity as a strategy for weight loss, little is known about the effects of gluten on obesity. We have previously shown a negative effect of gluten on obesity in mice. However, its effects on atherogenesis are still unknown. Therefore, the aim of this study was to determine the effects of gluten on atherosclerosis progression during obesity. METHODS: Atherosclerosis-susceptible ApoE knockout mice were subjected to an obesogenic GFD or a diet with 4.5% gluten (GD) for 10 wk. RESULTS: Results from the study found that food intake and lipid profile were similar between the groups. However, GD promoted an increase in weight gain, adiposity, and plasma glucose. Pro-inflammatory factors such as tumor necrosis factor, interleukin-6, chemokine ligand-2, and matrix metalloproteinase-2 and -9 also were increased in the adipose tissue of gluten-fed mice. This inflammatory profile was associated with reduced phosphorylation of Akt, and consequently with the intensification of insulin resistance. The GD-enhanced vascular inflammation contributed to the worsening of atherosclerosis in the aorta and aortic root. Inflammatory cells, such as monocyte/macrophage and natural killer cells, and oxidative stress markers, such as superoxide and nitrotyrosine, were increased in atherosclerotic lesions of the GD group. Furthermore, the lesions presented higher necrotic core and lower collagen content, characterizing the less stable plaques. CONCLUSION: The gluten-containing high-fat diet was associated with a more severe proatherogenic profile than the gluten-free high-fat diet owing to increased inflammatory and oxidative status at atherosclerotic lesions in obese mice.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/etiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glutens , Metaloproteinase 2 da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Obesidade/etiologia , Placa Aterosclerótica/etiologia
4.
J Leukoc Biol ; 106(3): 513-529, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313381

RESUMO

Alterations in the composition of the intestinal microbiota have been associated with development of type 1 diabetes (T1D), but little is known about changes in intestinal homeostasis that contribute to disease pathogenesis. Here, we analyzed oral tolerance induction, components of the intestinal barrier, fecal microbiota, and immune cell phenotypes in non-obese diabetic (NOD) mice during disease progression compared to non-obese diabetes resistant (NOR) mice. NOD mice failed to develop oral tolerance and had defective protective/regulatory mechanisms in the intestinal mucosa, including decreased numbers of goblet cells, diminished mucus production, and lower levels of total and bacteria-bound secretory IgA, as well as an altered IEL profile. These disturbances correlated with bacteria translocation to the pancreatic lymph node possibly contributing to T1D onset. The composition of the fecal microbiota was altered in pre-diabetic NOD mice, and cross-fostering of NOD mice by NOR mothers corrected their defect in mucus production, indicating a role for NOD microbiota in gut barrier dysfunction. NOD mice had a reduction of CD103+ dendritic cells (DCs) in the MLNs, together with an increase of effector Th17 cells and ILC3, as well as a decrease of Th2 cells, ILC2, and Treg cells in the small intestine. Importantly, most of these gut alterations precede the onset of insulitis. Disorders in the intestinal mucosa of NOD mice can potentially interfere with the development of T1D due the close relationship between the gut and the pancreas. Understanding these early alterations is important for the design of novel therapeutic strategies for T1D prevention.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Mucosa Intestinal/anormalidades , Animais , Citocinas/metabolismo , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Disbiose/patologia , Feminino , Microbioma Gastrointestinal , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/patologia , Linfonodos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Muco/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia
5.
Mucosal Immunol ; 12(1): 85-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30087442

RESUMO

Despite studies indicating the effects of IL-21 signaling in intestinal inflammation, its roles in intestinal homeostasis and infection are not yet clear. Here, we report potent effects of commensal microbiota on the phenotypic manifestations of IL-21 receptor deficiency. IL-21 is produced highly in the small intestine and appears to be critical for mounting an IgA response against atypical commensals such as segmented filamentous bacteria and Helicobacter, but not to the majority of commensals. In the presence of these atypical commensals, IL-21R-deficient mice exhibit reduced numbers of germinal center and IgA+ B cells and expression of activation-induced cytidine deaminase in Peyer's patches as well as a significant decrease in small intestine IgA+ plasmablasts and plasma cells, leading to higher bacterial burdens and subsequent expansion of Th17 and Treg cells. These microbiota-mediated secondary changes in turn enhance T cell responses to an oral antigen and strikingly dampen Citrobacter rodentium-induced immunopathology, demonstrating a complex interplay between IL-21-mediated mucosal immunity, microbiota, and pathogens.


Assuntos
Formas Bacterianas Atípicas/fisiologia , Linfócitos B/fisiologia , Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/imunologia , Helicobacter/fisiologia , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Receptores de Interleucina-21/genética , Animais , Carga Bacteriana , Diferenciação Celular , Células Cultivadas , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Homeostase , Humanos , Imunidade Humoral , Imunidade nas Mucosas , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Camundongos , Camundongos Knockout , Receptores de Interleucina-21/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
6.
Front Immunol ; 8: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194152

RESUMO

Heat shock proteins (Hsps) are highly expressed at all sites of inflammation. As they are ubiquitous and immunodominant antigens, these molecules represent good candidates for the therapeutic use of oral tolerance in autoimmune and chronic inflammatory diseases. Evidences from human and animal studies indicate that inflammatory bowel disease (IBD) results from uncontrolled inflammatory responses to intestinal microbiota. Hsps are immunodominant proteins expressed by several immune cells and by commensal bacteria. Using an IBD mouse model, we showed that oral pretreatment with genetically modified Lactococcus lactis that produces and releases Mycobacterium Hsp65, completely prevented DSS-induced colitis in C57BL/6 mice. Protection was associated with reduced pro-inflammatory cytokines, such as IFN-γ, IL-6, and TNF-α; increased IL-10 production in colonic tissue; and expansion of CD4+Foxp3+ and CD4+LAP+ regulatory T cells in spleen and mesenteric lymph nodes. This effect was dependent on IL-10 and toll-like receptor 2. Thus, this approach may open alternative options for long-term management of IBD.

7.
Microb Cell Fact ; 15(1): 150, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576902

RESUMO

BACKGROUND: Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. RESULTS: The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. CONCLUSIONS: This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels of IL-10-secreting regulatory cells and, thus, demonstrating the effectiveness of this novel DNA delivery-based strategy.


Assuntos
Vetores Genéticos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/metabolismo , Interleucina-4/genética , Lactococcus lactis/genética , Animais , Células CHO , Cricetulus , Citocinas/imunologia , Citocinas/metabolismo , DNA/genética , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/prevenção & controle , Interleucina-4/imunologia , Interleucina-4/uso terapêutico , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , Mucosa/imunologia , Mucosa/ultraestrutura , Transfecção
8.
Br J Nutr ; 113(6): 935-43, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25759975

RESUMO

The aim of the present study was to investigate the effect of a protein-free diet in the induction of food allergy and oral tolerance in BALB/c mice. The experimental model used was mice that were fed, since weaning up to adulthood, a balanced diet in which all dietary proteins were replaced by amino acid diet (Aa). The absence of dietary proteins did not prevent the development of food allergy to ovalbumin (OVA) in these mice. However, Aa-fed mice produced lower levels of IgE, secretory IgA and cytokines. In addition, when compared with mice from control group, Aa-fed mice had a milder aversive reaction to the allergen measured by consumption of OVA-containing solution and weight loss during food allergy development. In addition, mice that did not have dietary proteins in their diets were less susceptible to induction of oral tolerance. One single oral administration was not enough to suppress specific serum Ig and IgG1 levels in the Aa-fed group, although it was efficient to induce suppression in the control group. The present results indicate that the stimulation by dietary proteins alters both inflammatory reactivity and regulatory immune reactivity in mice probably due to their effect in the maturation of the immune system.


Assuntos
Dieta com Restrição de Proteínas , Hipersensibilidade Alimentar/prevenção & controle , Tolerância Imunológica , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Bucal/imunologia , Aminoácidos/uso terapêutico , Animais , Caseínas/efeitos adversos , Caseínas/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Feminino , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/metabolismo , Hipersensibilidade Alimentar/patologia , Imunoglobulina A Secretora/análise , Imunoglobulina A Secretora/biossíntese , Imunoglobulina E/análise , Imunoglobulina E/biossíntese , Imunoglobulina G/análise , Imunoglobulina G/biossíntese , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos Endogâmicos BALB C , Mucosa Bucal/metabolismo , Desmame , Redução de Peso
9.
J Immunol Methods ; 421: 36-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25707356

RESUMO

The ability to avoid inflammatory responses to dietary components and microbiota antigens in the gut mucosa is achieved by a mechanism termed oral tolerance. This phenomenon is crucial to maintain the physiological immune activity in the gut and to prevent inflammatory disorders such as food allergy and inflammatory bowel diseases. Moreover, orally administered antigens induce regulatory cells that control systemic inflammatory responses as well. Given its specific, systemic and long-lasting effects, oral tolerance represents a promising approach for immunotherapies that aim to modulate inflammatory and autoimmune diseases. However, there are different protocols of feeding for induction of oral tolerance, and they have an impact in tolerance efficiency and length. Herein, we present and discuss different experimental feeding protocols and how they influence the outcome of oral administration of antigens.


Assuntos
Dessensibilização Imunológica/métodos , Tolerância Imunológica/imunologia , Imunoglobulina E/sangue , Ovalbumina/imunologia , Células Th1/imunologia , Administração Oral , Animais , Nutrição Enteral , Feminino , Hipersensibilidade Alimentar/imunologia , Hipersensibilidade Alimentar/prevenção & controle , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/prevenção & controle , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...